Признак сравнения рядов с неотрицательными членами.

Ряды с неотрицательными членами.

 

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

 

Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

 

Пусть даны два ряда и при un, vn ³ 0.

 

Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

 

Доказательство. Обозначим через Sn и sn частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

 

Пример 26.2. Исследовать на сходимость ряд

Т.к. , а гармонический ряд расходится, то расходится и ряд .

 

Пример 26.3. Исследовать на сходимость ряд

Т.к. , а ряд сходится ( как убывающая геометрическая прогрессия), то ряд тоже сходится.

 

Также используется следующий признак сходимости:

Теорема. Если и существует предел , где h – число, отличное от нуля, то ряды и ведут одинаково в смысле сходимости.