Аналитические методы

Характеристика методов решения задач оптимизации

При решении конкретной задачи оптимизации исследователь прежде всего должен выбрать математический метод, который приводил бы к конечным результатам с наименьшими затратами на вычисления или же давал возможность получить наибольший объем информации об искомом решении. Выбор того или иного метода в значительной степени определяется постановкой оптимальной задачи, а также используемой математической моделью объекта оптимизации.

Группа аналитических методов оптимизации объединяет аналитический поиск экстремума функции, метод множителей Лагранжа, вариационные методы и принцип максимума.

Аналитический поиск экстремума функций, заданных без ограничений на независимые переменные, применяется к задачам, у которых оптимизируемая функция имеет аналитическое выражение, дифференцируемое во всем диапазоне исследования, а число переменных невелико. Это один из наиболее простых методов.

Группа методов математического программирования включает динамическое программирование, линейное программирование и нелинейное программирование.

Динамическое программирование – эффективныйметод решения задач оптимизации многостадийных процессов. Метод предполагает разбивку анализируемого процесса на стадии (во времени или в пространстве) – например, реактор в каскаде или тарелка в колонне. Рассмотрение задачи начинается с последней стадии процесса и оптимальный режим определяется постадийно.

Линейное программирование – метод для решения задач оптимизации с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных. Подобные задачи решаются итерационными способами. Эти методы используются при оптимальном планировании производства при ограниченном количестве ресурсов, для транспортных задач и др.

Методы нелинейного программирования – объединяют различные способы решения оптимальных задач: градиентные, безградиентные и случайного поиска. Общим для методов нелинейного программирования является то, что их используют при решении задач с нелинейными критериями оптимальности. Все методы нелинейного программирования – это численные методы поискового типа. Суть их – в определении набора независимых переменных, дающих наибольшее приращение оптимизируемой функции. Данная группа методов применяется как для детерминированных, так и стохастических процессов.

 

Аналитические методы основаны на классических методах математического анализа.

Задача оптимизации формулируется следующим образом. Существует процесс, известна его математическая модель и установлен критерий оптимизации R в виде функции:

(7.3)

Либо функционала:

(7.4), где:

Заданы ограничения:

Необходимо при заданных ограничениях найти такие значения, при которых Rдостигает экстремума. В случае функционала Кнеобходимо найти вид функции , при которой Rдостигает экстремума.

Аналитические методы поиска экстремума критерия оптимальности применяются к задачам, у которых оптимизируемая функция имеет аналитическое выражение, а число переменных невелико.

В качестве примера рассмотрим определение оптимального времени пребывания смеси в РИВ.

W1 W2

Для двух последовательных реакций А -----> В------>Dнеобходимо определить оптимальное время пребывания tопт, при котором выход целевого продукта В будет достигать максимума.

Пусть а– начальная концентрация компонента А.В начальный момент времени концентрации компонентов В и D равны нулю:

приt=0: CВ = СD=0;

Критерий оптимизации: выход целевого продукта R=CB/a.Управляющее воздействие – время пребывания t.

Характер изменения концентраций компонентов во времени приведен на рис. 7.2.

Пусть обе реакции протекают по первому порядку.

Рис. 7.2

W(1)=R(1)*WC(A) (7.5)
W(2)=K(2)*WC(B) (7.6)
dc(b)/dt=W1-W2 (7.7)

Из (7.5) найдем выражение для текущей концентрации СА.

Преобразуем (7.5):

 

-СА; dt

Проинтегрировав, получим:

 

In(7.8)

Подставим (7.8) и (7.6) в (7.7):

ae-K1t –K2CB

Или

1 (7.9)

Решив полученное уравнение, найдем выражение для определения текущей концентрации компонента В:

СB=a(e-K1t - e-K2t)(7.10)

Выход целевого продукта:

R=CB/a=(e-K1t-e-K2t)(7.11)

Исследуем экстремум полученной целевой функции (7.11). Условия существования максимума dR/dt=0; d2R/dt2<0; Найдем первую производную и приравняем ее нулю:

(-K1e-K1t-K2e-K2t)=0 (7.12)

Решив полученное уравнение, определим оптимальное время пребывания:

topt=In(7.13)

Для проверки выполнения достаточного условия существования максимума вычисляем вторую производную:

=(K12e-K1t-K22e-K2t)<0

Так как вторая производная меньше 0, то в данной точке существует максимум целевой функции R. Подставив (7.13) в (7.10), получим выражение для определения максимальной концентрации компонента В:

CB opt= a2() (7.14)