Выбор главных размеров активной части генератора

ПРОЕКТИРОВАНИЕ СИНХРОННОГО ГЕНЕРАТОРА

Проектирование синхронного генератора, как и любой другой электрической машины, начинают с выбора главных размеров: внутреннего диаметра статора D и расчетной длины lδ. Как указывалось, эта задача не имеет однозначного решения, поэтому для нахождения оптимальных значений D и lδ приходится рассчитывать ряд вариантов, для сокращения числа которых целесообразно воспользоваться рекомендациями, полученными на основе накопленного опыта проектирования.

Для предварительного определения диаметра D можно воспользоваться зависимостями D=f(S'H), рис.1.1, соответствующими усредненным диаметрам выполненных машин.

Расчетная электромагнитная мощность , кВ×А,

,

где kЕ – отношение ЭДС обмотки якоря при номинальной нагрузке Ен к номинальному напряжению Uн, предварительно принимают kE≈1,08; Рн – номинальная мощность, кВт; cosφн – номинальный коэффициент мощности.

 

Рис. 1.1

Число пар полюсов р и полюсное деление τ, м, равны соответственно

Предварительное значение внешнего диаметра статора Da , м,

Da=kДD.

Значения kД в зависимости от 2р приведены в табл. 1.1.

Таблица 1.1

2р
kД 1,43–1,52 1,38–1,45 1,35–1,4 1,3–1,36 1,28–1,33 1,25–1,3
2р 32 и более
kД 1,22–1,28 1,2–1,26 1,18–1,25 1,16–1,22 1,15–1,2 1,14–1,18

Полученное значение Da округляют до ближайшего нормализованного диаметра (табл. 1.2). От выбранного диаметра Da зависят габариты и высота оси вращения h проектируемой машины.

В случае корректировки Da следует произвести пересчёт диаметра D и полюсного деления τ:

D = Da/kД ;

,

в этом случае для kД берут среднее значение при данном 2р.

Расчетная длина lδ машины, м,

Габарит Da , мм h, мм

где αδ – расчетный коэффициент полюсного перекрытия (определяется по рис. 1.2); kB – коэффициент формы поля (рис. 1.2);

kоб1 – обмоточный коэффициент обмотки статора; А – линейная нагрузка статора, А/м; Вδн – максимальное значение индукции в воздушном зазоре при номинальной нагрузке, Тл.

Рис. 1.2

Так как и kB зависят от размеров и конфигурации полюсного наконечника, а также воздушного зазора δ и полюсного деления τ и пока неизвестны, то предварительно можно принять αδ=

= 0,65–0,68; kB= 1,16–1,14, а их произведение ·kB= 0,75–0,78 (эти значения соответствуют = 0,68–0,72 при δм/δ =1,5 и δ/τ ≈ ≈0,01).

Обмоточный коэффициент kоб1 предварительно принимают равным 0,92.

Линейную нагрузку А и индукцию Вδн при Uн = 380–6600 В выбирают по рис. 1.3 и 1.4. При Uн = 10000 В величину Вδн можно также выбирать по рис. 1.4, а линейную нагрузку А следует снизить на 10–15 %, так как из-за более толстой пазовой изоляции ухудшается охлаждение обмотки якоря.

Рис 1.3

Выбранные значения А и Вδн являются предварительными и в дальнейшем при необходимости их можно изменять. При этом следует иметь в виду, что чем больше произведение А·Вδн , тем меньший активный объем D2lδ будет иметь проектируемая машина. Однако каждая машина имеет свои верхние пределы А и Вδн.

Рис. 1.4

Приведенные на рис. 1.3 верхние значения А соответствуют серийным машинам защищенного исполнения с косвенным воздушным охлаждением, с изоляцией класса нагревостойкости В. Верхний предел индукции Вδн ограничен насыщением магнитной цепи, в основном – насыщением зубцового слоя. Кроме того, с увеличением отношения А/Вδн возрастают индуктивные сопротивления машины.

Определив расчетную длину lδ , находят отношение

,

причем чем длиннее машина (больше λ), тем хуже условия её охлаждения, а чем короче, тем больше доля лобовых частей в длине витка обмотки и тем больше потери в обмотке. Значения λ для современных машин указаны на рис. 1.5.

Рис. 1.5

Для улучшения охлаждения сталь статора обычно разбивают на несколько пакетов длиной lпак ≈ 4–5 см, между которыми делают радиальные вентиляционные каналы шириной bк = 10 мм (рис. 1.6).

Рис. 1.6

При наличии вентиляционных каналов истинная длина статора будет больше расчетной и предварительно может быть принята

Длину всех пакетов чаще всего берут одинаковой. Число вентиляционных каналов в этом случае

причем nK округляют до целого числа.

После округления nK уточняют длину пакета

и округляют ее до одного миллиметра.

Суммарная длина пакетов сердечника

Проекции синхронного генератора приведены на рис. 1.7.

Рис. 1.7

Синхронная машина имеет радиальную систему вентиляции, обеспечиваемую вентиляционным действием полюсов ротора и вентиляционными лопатками, направляющими часть воздушного потока на лобовые части обмотки статора (рис. 1.8). Охлаждающий воздух в машинах защищённого исполнения входит через вентиляционные окна в подшипниковых щитах (рис. 1.8, а), проходит вдоль лобовых частей обмотки статора, через междуполюсное пространство ротора (охлаждая обмотку возбуждения), радиальные вентиляционные каналы статора и выходит через боковые жалюзи. Схема вентиляции машины закрытого исполнения с установленным в верхней части теплообменником показана на рис. 1.8, б.

Рис. 1.8. Схема вентиляции синхронных машин

2. Выбор типа обмотки и расчёт зубцовой зоны статора

Для статоров синхронных машин общего назначения мощностью от сотен до нескольких тысяч киловатт применяют двухслойные катушечные петлевые обмотки с числом эффективных проводников в пазу uп более двух. По условиям технологии каждый эффективный проводник может состоять из одного или нескольких элементарных прямоугольных проводников с сечением 12–20 мм2. Ток в таком составном проводнике допускается от 50 до 150, реже до 250 А. Если номинальный фазный ток машины Iнф превышает указанные пределы, то обмотку выполняют с несколькими параллельными ветвями a1.

Номинальный фазный ток Iнф обмотки статора при рекомендуемом соединении ее в звезду равен линейному току:

Тогда число параллельных ветвей

Причём число a1 должно быть целым и кратным 2р. В дальнейшем a1 нужно увязать с выбранным числом пазов статора Z1.

При необходимости ток в составном проводнике можно принимать больше 250 А. В этом случае произведение этого тока на число проводников в пазу uп не должно превышать 3000 А.

Рис. 2.1

Число пазов Z1 существенно влияет на технико-экономические показатели проектируемой машины, поэтому оптимальное число Z1 можно выбрать только после расчета и сравнения между собой ряда вариантов.

Зубцовое деление статора

Определив из рис. 2.1 при полученном ранее значении τ максимальное и минимальное значения t1 (1 – для 13–14 габаритов, 2 – для 15–17 габаритов, 3 – для 18–21 габаритов), находят соответствующие им числа пазов (зубцов) машины:

Из диапазона ZlmaxZlmin выбирают такое целое число Z, при котором выполняются следующие требования:

2.1. Zl должно быть кратным числу фаз m и числу параллельных ветвей a1, т.е. – целое число.

2.2. Число пазов на полюс и фазу должно быть целым или дробным вида q1=b+c/d (b – целое число, а c/d – правильная несократимая дробь, причем d не кратно m и меньше p). При 2р < 8 чаще всего выбирают целое число q1 = 3(2) – 5 (большие значения для машин с меньшим числом полюсов). При 2р > 8 и малом τ можно выбирать обмотки с дробным q1 ().

2.3. При целом q1 отношение 2р/a1 должно быть целым. При дробном q1 должно быть целым числом отношение .

2.4. Для удобства сегментировки статора при Da>0,99 м желательно, чтобы величина Zl разлагалась на возможно большее число простых множителей (2, 3, 5).

2.5. Для машин с Dа > 3,25 м число пазов должно быть кратным числу разъемов статора, выполняемых для возможной транспортировки по железной дороге.

Из диапазона ZlmaxZlmin выбирают такое Zl , которое наиболее полно удовлетворяет указанным требованиям. Затем определяют и число эффективных проводников в пазу

которое округляют до ближайшего чётного числа.

По найденному значению uп уточняют линейную нагрузку

.

Число пазов Zl следует принять таким, при котором уточненное значение А отличается от выбранного в начале расчета более, чем на 10 %. Полученные таким образом значения Z1, uп, a1 , q1 и А для машин с Dа ≤ 0,99 м являются окончательными. В случае Da > 0,99 м число пазов устанавливают после выполнения сегментировки статора.