Остовы графа
Если связный граф содержит цикл, то после удаления любого ребра, входящего в цикл, этот цикл разрушается, но связность графа сохраняется. Применим операцию разрушения циклов к каждому циклу графа. Тогда в графе не останется циклов и получится связный частичный граф, являющийся деревом.
Определение. Полученное дерево называется остовом, т. е. остовом называется связный частичный граф данного связного графа
, содержащий все вершины графа
, но не содержащий циклов.
Пример.Рассмотрим, например, граф, изображенный на рисунке 6.71. Удалим из него ребра
и
и получим остов. Если удалить ребра
и
, то получим другой остов.

Рисунок 6.71
Два остова в
считаются различными, если они отличаются хотя бы одним ребром.
Для того чтобы
имел более одного остова, необходимо и достаточно существование хотя бы одного цикла в
.
Для полного (простого) графа
перечисление остовов есть перечисление всех помеченных деревьев с вершинами графа
, так что число остовов равно
.
В общем случае число остовов получил Кирхгоф.
Определение. Матрицей Кирхгофа
простого графа
называется
-матрица с элементами, которые определяются так:

Сумма элементов в каждой строке и каждом столбце матрицы
равна нулю.
Теорема Кирхгофа. Число остовных деревьев в простом связном графе
с
вершинами равно алгебраическому дополнению любого элемента матрицы Кирхгофа
.