Повторные пределы
(на примере функций двух переменных).
1º). Пусть
. Требуется найти двойной предел:
.
Рассмотрим:
а).
. б).
.
Найденные пределы функции
называются повторными пределами.
Т.к. повторные пределы различны, то
не существует.
2º). Пусть
. Требуется найти двойной предел:
.
а).
;б).
.
Последний из повторных пределов, а вместе с ним и двойной не существует.
Примеры показывают, что при перестановке двух предельных переходов следует быть очень осторожным.
Тº. Если: 1) Существует (конечный или нет) двойной предел:
;
2) При любом
существует (конечный) предел по х:
,
то существует и повторный предел:
, равный двойному Δ▲.
Однако, не следует думать, что существование двойного предела необходимо для равенства повторных:
Пример:
, как было установлено, не существует, а повторные пределы существуют
,
и равны между собой.