3.12. Способен ли робот на «твердые математические убеждения»?

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 

Воспользовавшись вышеописанным способом, мы и в самом деле можем представить себе в высшей степени обобщенного самообучающегося вычислительного «робота» в виде машины Тьюринга. Далее, предполагается, что наш робот способен судить об истинности математических утверждений, пользуясь при этом всеми способностями, потенциально присущими математикам-людям. И как же он будет это делать? Вряд ли нас обрадует необходимость кодировать каким-нибудь исключительно «нис­ходящим» способом все математические правила (все те, что вхо­дят в формальную системуплюс все те, что туда не входят, о чем мы говорили выше), которые понадобятся роботу для того, чтобы иметь возможность непосредственно формировать соб­ственные суждения подобно тому, как это делают люди, исходя из известных им правил, — поскольку, как мы могли убедиться, не существует ни одного сколько-нибудь приемлемого способа (за исключением, разумеется, «божественного вмешательства» — см.), посредством которого можно было бы реализовать такой неимоверно сложный и непознаваемо эффективный нисходящий алгоритм. Следует, очевидно, допустить, что каки­ми бы внутренними «нисходящими» элементами ни обладал наш робот, они не являются жизненно важными для решения слож­ных математических проблем, а представляют собой всего лишь общие правила, обеспечивающие, предположительно, почву для формирования такого свойства как «понимание».

Выше (см.) мы говорили о двух различных категориях входных данных, которые могут оказать существенное влияние на поведение нашего робота: искусственных и естественных. В качестве искусственного аспекта окружения мы рассматриваем учителя (одного или нескольких), который сообщает роботу о различных математических истинах и старается подтолкнуть его к выработке каких-то внутренних критериев, с помощью которых робот мог бы самостоятельно отличать истинные утверждения от ложных. Учитель может информировать робота о совершен­ных тем ошибках или рассказывать ему о всевозможных мате­матических понятиях и различных допустимых методах матема­тического доказательства. Конкретные процедуры, применяемые в процессе обучения, учитель выбирает по мере необходимости из широкого диапазона возможных вариантов: «упражнение», «объяснение», «наставление» и даже, возможно, «порка». Что до естественных аспектов физического окружения, то они отве­чают за «идеи», возникающие у робота в процессе наблюдения за поведением физических объектов; кроме того, окружение предо­ставляет роботу конкретные примеры воплощения различных ма­тематических понятий — например, понятия натуральных чисел: два апельсина, семь бананов, четыре яблока, один носок, ни од­ного ботинка и т. д., — а также хорошие приближения идеальных геометрических объектов (прямая, окружность) и некоторых бес­конечных множеств (например, множество точек, заключенных внутри окружности).

Поскольку наш робот избежал-таки предварительного, пол­ностью нисходящего программирования и, как мы предполага­ем, формирует собственное понятие о математической истине с помощью всевозможных обучающих процедур, то нам следует позволить ему совершать в процессе обучения ошибки — с тем, чтобы он мог учиться и на своих ошибках. Первое время, по крайней мере, на эти ошибки ему будет указывать учитель. Или робот может самостоятельно обнаружить из наблюдений за окру­жением, что какие-то из его предыдущих, предположительно ис­тинных математических суждений оказываются в действительно­сти ошибочными, либо сомнительными и подлежащими повтор­ной проверке. Возможно, он придет к такому выводу, основы­ваясь исключительно на собственных соображениях о противо­речивости этих своих суждений и т.д. Идея такова, что по мере накопления опыта робот будет делать все меньше и меньше оши­бок. С течением времени учителя и физическое окружение будут становиться для робота все менее необходимыми — возможно, в конечном счете, окажутся и вовсе ненужными, — и при форми­ровании своих математических суждений он будет все в большей степени опираться на собственную вычислительную мощь. Соот­ветственно, можно предположить, что в дальнейшем наш робот не ограничится теми математическими истинами, что он узнал от учителей или вывел из наблюдений за физическим окружением. Возможно, впоследствии он даже внесет какой-либо оригиналь­ный вклад в математические исследования.

Для того чтобы оценить степень правдоподобия нарисован­ной нами картины, необходимо соотнести ее с теми вещами, что мы обсуждали ранее. Если мы хотим, чтобы наш робот и в самом деле обладал всеми способностями, пониманием и про­ницательностью математика-человека, ему потребуется какая-никакая концепция «неопровержимой математической истины». Его ранние попытки в формировании суждений, исправленные учителями или обесцененные наблюдением за физическим окру­жением, в эту категорию никоим образом не попадают. Они отно­сятся к категории «догадок», а догадкам позволяется быть пред­варительными, пробными и даже ошибочными. Если предполага­ется, что наш робот должен вести себя как подлинный математик, то даже те ошибки, которые он будет порой совершать, должны быть исправимыми — причем, в принципе, исправимыми имен­но в соответствии с его собственными внутренними критериями «неопровержимой истинности».

Выше мы уже убедились, что концепцию «неопровержи­мой истины», которой руководствуется в своей деятельности математик-человек, нельзя сформировать посредством какого бы то ни было познаваемого (человеком) набора механических правил, в справедливости которых этот самый человек может быть целиком и полностью уверен. Если мы полагаем, что наш робот способен достичь уровня математических способностей, достижимого, в принципе, для любого человеческого существа (а то и превзойти этот уровень), то в этом случае его (робота) кон­цепция неопровержимой математической истины также должна представлять собой нечто такое, что невозможно воспроизвести посредством набора механических правил, которые можно пола­гать обоснованными, — т. е. которые может полагать обоснован­ными математик-человек или, коли уж на то пошло, математик-робот.

В связи с этими соображениями возникает один весьма важ­ный вопрос: чьи же концепции, восприятие, неопровержимые убеждения следует считать значимыми — наши или роботов? Можно ли полагать, что робот действительно обладает убе­ждениями или способен что-либо осознавать? Если читатель придерживается точки зрения, то он, возможно, сочтет такой вопрос несколько неуместным, поскольку сами понятия «осозна­ния» или «убеждения» относятся к описанию процесса мышле­ния и поэтому никоим образом неприменимы к целиком компью­терному роботу. Однако в рамках настоящего рассуждения нет необходимости в том, чтобы наш гипотетический робот и в самом деле обладал какими-то подлинными ментальными качествами, коль скоро мы допускаем, что он способен внешне вести себя в точности подобно математику-человеку — в полном соответ­ствии с самыми строгими формулировками как, так и. Нам не нужно, чтобы робот действительно понимал, осознавал или верил, достаточно того, что внешне он проявляет себя в точно­сти так, будто он этими ментальными качествами в полной мере обладает. Подробнее об этом мы поговорим в

Точка зренияне отличается принципиально отв том, что касается ограничений, налагаемых на возможную манеру поведения робота, однако сторонники, скорее всего, питают несколько меньшие надежды в отношении тех высот, которых на деле может достичь робот, или вероятности создания вычис­лительной системы, которую можно было бы полагать способной на эффективное моделирование деятельности мозга человека, оценивающего обоснованность того или иного математического рассуждения. Подобное человеческое восприятие предполагает все же некоторое понимание смысла затронутых математических концепций. Согласно точке зрения, во всем этом нет ничего, выходящего за рамки некоторого свойства вычисления, связан­ного с понятием «смысла», тогда какрассматривает смысл в качестве семантического аспекта мышления и не допускает возможности его описания в чисто вычислительных терминах. В этом мы согласны с точкой зренияи отнюдь не ожидаем от нашего робота способности действительно ощущать тонкие се­мантические различия. Таким образом, сторонники, возможно, менее (нежели сторонники) склонны предполагать, что какой бы то ни было робот, сконструированный в соответствии с обсу­ждаемыми здесь принципами, окажется когда-либо способен на демонстрацию тех внешних проявлений человеческого понима­ния, какие свойственны математикам-людям. Полагаю, отсюда можно сделать вывод (не такой, собственно, и неожиданный), что сторонниковбудет существенно легче обратить в привержен­цев, чем сторонников; впрочем, для нашего дальнейшего

исследования разница между A и B существенного значения не имеет.

В качестве заключения отметим, что, хотя истинность ма­тематических утверждений нашего робота, получаемых посред­ством преимущественно восходящей системы вычислительных процедур, носит заведомо предварительный и предположитель­ный характер, следует допустить, что роботу действительно при­сущ некоторый достаточно «прочный» уровень неопровержи­мой математической «убежденности», вследствие чего некото­рые из его утверждений (которым он будет присваивать некий особый статус — обозначаемый, скажем, знаком *(звёздочка)) следует счи­тать неопровержимо истинными — согласно собственным кри­териям робота. О допустимости ошибочного присвоения роботом статуса * — пусть им же и исправимом — мы поговорим в § 3.19. А до той поры будем полагать, что всякое -*-утверждение робота следует рассматривать как безошибочное.

 

Воспользовавшись вышеописанным способом, мы и в самом деле можем представить себе в высшей степени обобщенного самообучающегося вычислительного «робота» в виде машины Тьюринга. Далее, предполагается, что наш робот способен судить об истинности математических утверждений, пользуясь при этом всеми способностями, потенциально присущими математикам-людям. И как же он будет это делать? Вряд ли нас обрадует необходимость кодировать каким-нибудь исключительно «нис­ходящим» способом все математические правила (все те, что вхо­дят в формальную системуплюс все те, что туда не входят, о чем мы говорили выше), которые понадобятся роботу для того, чтобы иметь возможность непосредственно формировать соб­ственные суждения подобно тому, как это делают люди, исходя из известных им правил, — поскольку, как мы могли убедиться, не существует ни одного сколько-нибудь приемлемого способа (за исключением, разумеется, «божественного вмешательства» — см.), посредством которого можно было бы реализовать такой неимоверно сложный и непознаваемо эффективный нисходящий алгоритм. Следует, очевидно, допустить, что каки­ми бы внутренними «нисходящими» элементами ни обладал наш робот, они не являются жизненно важными для решения слож­ных математических проблем, а представляют собой всего лишь общие правила, обеспечивающие, предположительно, почву для формирования такого свойства как «понимание».

Выше (см.) мы говорили о двух различных категориях входных данных, которые могут оказать существенное влияние на поведение нашего робота: искусственных и естественных. В качестве искусственного аспекта окружения мы рассматриваем учителя (одного или нескольких), который сообщает роботу о различных математических истинах и старается подтолкнуть его к выработке каких-то внутренних критериев, с помощью которых робот мог бы самостоятельно отличать истинные утверждения от ложных. Учитель может информировать робота о совершен­ных тем ошибках или рассказывать ему о всевозможных мате­матических понятиях и различных допустимых методах матема­тического доказательства. Конкретные процедуры, применяемые в процессе обучения, учитель выбирает по мере необходимости из широкого диапазона возможных вариантов: «упражнение», «объяснение», «наставление» и даже, возможно, «порка». Что до естественных аспектов физического окружения, то они отве­чают за «идеи», возникающие у робота в процессе наблюдения за поведением физических объектов; кроме того, окружение предо­ставляет роботу конкретные примеры воплощения различных ма­тематических понятий — например, понятия натуральных чисел: два апельсина, семь бананов, четыре яблока, один носок, ни од­ного ботинка и т. д., — а также хорошие приближения идеальных геометрических объектов (прямая, окружность) и некоторых бес­конечных множеств (например, множество точек, заключенных внутри окружности).

Поскольку наш робот избежал-таки предварительного, пол­ностью нисходящего программирования и, как мы предполага­ем, формирует собственное понятие о математической истине с помощью всевозможных обучающих процедур, то нам следует позволить ему совершать в процессе обучения ошибки — с тем, чтобы он мог учиться и на своих ошибках. Первое время, по крайней мере, на эти ошибки ему будет указывать учитель. Или робот может самостоятельно обнаружить из наблюдений за окру­жением, что какие-то из его предыдущих, предположительно ис­тинных математических суждений оказываются в действительно­сти ошибочными, либо сомнительными и подлежащими повтор­ной проверке. Возможно, он придет к такому выводу, основы­ваясь исключительно на собственных соображениях о противо­речивости этих своих суждений и т.д. Идея такова, что по мере накопления опыта робот будет делать все меньше и меньше оши­бок. С течением времени учителя и физическое окружение будут становиться для робота все менее необходимыми — возможно, в конечном счете, окажутся и вовсе ненужными, — и при форми­ровании своих математических суждений он будет все в большей степени опираться на собственную вычислительную мощь. Соот­ветственно, можно предположить, что в дальнейшем наш робот не ограничится теми математическими истинами, что он узнал от учителей или вывел из наблюдений за физическим окружением. Возможно, впоследствии он даже внесет какой-либо оригиналь­ный вклад в математические исследования.

Для того чтобы оценить степень правдоподобия нарисован­ной нами картины, необходимо соотнести ее с теми вещами, что мы обсуждали ранее. Если мы хотим, чтобы наш робот и в самом деле обладал всеми способностями, пониманием и про­ницательностью математика-человека, ему потребуется какая-никакая концепция «неопровержимой математической истины». Его ранние попытки в формировании суждений, исправленные учителями или обесцененные наблюдением за физическим окру­жением, в эту категорию никоим образом не попадают. Они отно­сятся к категории «догадок», а догадкам позволяется быть пред­варительными, пробными и даже ошибочными. Если предполага­ется, что наш робот должен вести себя как подлинный математик, то даже те ошибки, которые он будет порой совершать, должны быть исправимыми — причем, в принципе, исправимыми имен­но в соответствии с его собственными внутренними критериями «неопровержимой истинности».

Выше мы уже убедились, что концепцию «неопровержи­мой истины», которой руководствуется в своей деятельности математик-человек, нельзя сформировать посредством какого бы то ни было познаваемого (человеком) набора механических правил, в справедливости которых этот самый человек может быть целиком и полностью уверен. Если мы полагаем, что наш робот способен достичь уровня математических способностей, достижимого, в принципе, для любого человеческого существа (а то и превзойти этот уровень), то в этом случае его (робота) кон­цепция неопровержимой математической истины также должна представлять собой нечто такое, что невозможно воспроизвести посредством набора механических правил, которые можно пола­гать обоснованными, — т. е. которые может полагать обоснован­ными математик-человек или, коли уж на то пошло, математик-робот.

В связи с этими соображениями возникает один весьма важ­ный вопрос: чьи же концепции, восприятие, неопровержимые убеждения следует считать значимыми — наши или роботов? Можно ли полагать, что робот действительно обладает убе­ждениями или способен что-либо осознавать? Если читатель придерживается точки зрения, то он, возможно, сочтет такой вопрос несколько неуместным, поскольку сами понятия «осозна­ния» или «убеждения» относятся к описанию процесса мышле­ния и поэтому никоим образом неприменимы к целиком компью­терному роботу. Однако в рамках настоящего рассуждения нет необходимости в том, чтобы наш гипотетический робот и в самом деле обладал какими-то подлинными ментальными качествами, коль скоро мы допускаем, что он способен внешне вести себя в точности подобно математику-человеку — в полном соответ­ствии с самыми строгими формулировками как, так и. Нам не нужно, чтобы робот действительно понимал, осознавал или верил, достаточно того, что внешне он проявляет себя в точно­сти так, будто он этими ментальными качествами в полной мере обладает. Подробнее об этом мы поговорим в

Точка зренияне отличается принципиально отв том, что касается ограничений, налагаемых на возможную манеру поведения робота, однако сторонники, скорее всего, питают несколько меньшие надежды в отношении тех высот, которых на деле может достичь робот, или вероятности создания вычис­лительной системы, которую можно было бы полагать способной на эффективное моделирование деятельности мозга человека, оценивающего обоснованность того или иного математического рассуждения. Подобное человеческое восприятие предполагает все же некоторое понимание смысла затронутых математических концепций. Согласно точке зрения, во всем этом нет ничего, выходящего за рамки некоторого свойства вычисления, связан­ного с понятием «смысла», тогда какрассматривает смысл в качестве семантического аспекта мышления и не допускает возможности его описания в чисто вычислительных терминах. В этом мы согласны с точкой зренияи отнюдь не ожидаем от нашего робота способности действительно ощущать тонкие се­мантические различия. Таким образом, сторонники, возможно, менее (нежели сторонники) склонны предполагать, что какой бы то ни было робот, сконструированный в соответствии с обсу­ждаемыми здесь принципами, окажется когда-либо способен на демонстрацию тех внешних проявлений человеческого понима­ния, какие свойственны математикам-людям. Полагаю, отсюда можно сделать вывод (не такой, собственно, и неожиданный), что сторонниковбудет существенно легче обратить в привержен­цев, чем сторонников; впрочем, для нашего дальнейшего

исследования разница между A и B существенного значения не имеет.

В качестве заключения отметим, что, хотя истинность ма­тематических утверждений нашего робота, получаемых посред­ством преимущественно восходящей системы вычислительных процедур, носит заведомо предварительный и предположитель­ный характер, следует допустить, что роботу действительно при­сущ некоторый достаточно «прочный» уровень неопровержи­мой математической «убежденности», вследствие чего некото­рые из его утверждений (которым он будет присваивать некий особый статус — обозначаемый, скажем, знаком *(звёздочка)) следует счи­тать неопровержимо истинными — согласно собственным кри­териям робота. О допустимости ошибочного присвоения роботом статуса * — пусть им же и исправимом — мы поговорим в § 3.19. А до той поры будем полагать, что всякое -*-утверждение робота следует рассматривать как безошибочное.