Программируемый генератор синусоидальных колебаний

Федеральное агентство по образованию РФ

Рязанская государственная радиотехническая академия

Кафедра ИИБМТ

Пояснительная записка к курсовой работе по дисциплине: «Электроника и микропроцессорная техника» на тему:

«ПРОГРАММИРУЕМЫЙ ГЕНЕРАТОР СИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ»

Выполнил:

студент гр. 234

Киреев А. А.

Проверил:

Струтинский Ю. А.

Оглавление

Техническое задание............................................................................................................. 3 Введение.................................................................................................................................4 Обзор литературы..................................................................................................................5 Разработка структурной и функциональной схемы устройства....................................... 7 Разработка принципиальной схемы и выбор элементной базы........................................ 9 Разработка аналоговой части..........................................................................................9 Генератор.................................................................................................................... 9 Выходной каскад......................................................................................................11 Расчёт генератора с выходным каскадом.............................................................. 12 Расчёт элементов моста Винна............................................................................... 13 Разработка цифровой части.......................................................................................... 14 Разработка программного обеспечения............................................................................ 19 Основной цикл............................................................................................................... 19 Подпрограмма установки RC-матрицы....................................................................... 21 Заключение.......................................................................................................................... 22 Список литературы..............................................................................................................23 Приложения......................................................................................................................... 24 Пречень элементов........................................................................................................ 24 Список сокращений....................................................................................................... 26

Техническое задание

Разработать программируемый генератор синусоидального сигнала со следующими характеристиками:

Диапазон частот:................................................................................... Δf, Гц ...................... 20..20 000 Относительная погрешность в пределах частотного диапазона:..... δотн ........................... 2% Сопротивление нагрузки:..................................................................... Rнагр не менее, Ом ..5

Введение

Колебания синусоидальной формы являются одним из наиболее распространённых в радиоэлектронике видов колебаний. Генераторы синусоидальных колебаний используются в радиотехнике для настройки и калибровки различных цепей и устройств, а также могут применяться при их синтезе и непосредственно быть составными частями радиоэлектронной аппаратуры. Получение сигналов синусоидальной формы с высокой точностью очень важно при анализе и оценке характеристик нелинейностей квазилинейных устройств, таких как усилители. Столь же важно получать синусоидальные колебания с высокой точностью по частоте, например, для избирательных усилителей или средств измерения частоты.

В зависимости от области применения, генераторы можно разделить на высокочастотные и низкочастотные. В техническом задании описан низкочастотный генератор, более того, его диапазон лежит области звуковых частот. При синтезе низкочастотных генераторов важно учитывать то, что прежде всего необходимо получить сигнал с высокой точностью формы. Это требование обусловлено тем, что данные генераторы используются для настройки и измерения искажений в усилителях, фильтрах и измерительных каналах (невысокого быстродействия).

Существует множество устройств на различных активных элементах (транзисторы, операционные усилители). Генератор можно получить, охватив обычный усилитель положительной обратной связью (ОС), как показано на рисунке 1. Принцип работы таких генераторов

1 3

основан на использовании в цепях ОС фазосдвигающих или

V E

резонансных элементов: U2

  • мост Винна,
  • двойной Т-образный мост, Рис.1. Основная блок-схема генератора.
  • сдвигающая RC-цепь.

Существуют и другие способы генерирования синусоидальных колебаний:

  • фильтрация (размывание) импульсов треугольной формы,
  • выделение первой гармонической составляющей прямоугольных импульсов,
  • компенсация потерь в LC-контуре,
  • моделирование дифференциального уравнения синусоидальных колебаний.

В зависимости от целеуказания, следует выбрать один из методов. Например, генераторы на основе RC-цепей отличаются простотой конструкции и невысокой стоимостью, однако не обеспечевают высокой точности формы и высокой стабильности частоты. Генераторы на основе LC-контура используются при создании колебаний на радиочастотах. На низких частотах, получить высокостабильные колебания позволяют методы синтеза и моделирования дифференциального уравнения гармонических колебаний, но два последних метода отличаются чрезвычайно сложной конструкцией генераторов и, соответственно, высокой стоимостью.

Обзор литературы

1. Алексенко А. Г., Коломбет Е. А., Стародуб Г. И.

«Применение прецизионных аналоговых микросхем» В книге описаны основные конструкции генераторов. Основное внимание авторы уделяют вопросам применения операционных усилителей (ОУ). Рассматриваются схемотехника прецизионных аналоговых микросхем и их применение в радиоэлектронной аппаратуре. Основное внимание уделяется принципам построения и типовым каскадам аналоговых микросхем общего применения: операционным усилителям, компараторам и перемножителям напряжения, таймерам, интегральным стабилизаторам, цифро-аналоговым и аналого-цифровым преобразователям. Излагаются условия достижения

предельных параметров аналоговых микросхем и схемотехнические способы улучшения их характеристик. В книге приведён ряд конструктивных решений, связанных с пояснением общих принципов построения

генераторов на ОУ, а также несколько конструкций конкретных устройств. В частности, из книги были заимствованы генераторы синусоидальных колебаний:

  • на мосте Винна,
  • на Т-образном мосте,
  • со стабилизацией частоты кварцевым кристаллом,

• с программируемым значением частоты. Также из книги заимствованы расчётные формулы и, в отдельных случаях, номиналы элементов.

2. Гутников В. С.

«Интегральная электроника в измерительных устройствах» Рассматриваются серийные микросхемы в электронных функциональных узлах и устройствах, особенности операционных усилителей, компараторов, умножителей, сведения о распространённых

цифровых интегральных схемах, примеры функциональных узлов на отечественных микросхемах. Введены разделы о микропроцессорных схемах, АЦП и ЦАП. Использованы следующие материалы книги:

  • схемы и элементы расчёта RC-генераторов на ОУ,
  • расчёт цепей, содержащих ОУ,
  • справочные данные ОУ, аналоговых ключей и коммутаторов.

3. Королев Г. В.

«Электронные устройства автоматики» В книге изложены основы проектирования и расчёта электронных устройств автоматики: усилителей, выпрямителей, стабилизаторов, релейных и избирательных схем, в качестве элементной базы рассмотренных устройств использованы в основном биполярные и полевые транзисторы, большое

внимание уделено вопросам микроминиатюризации электронных устройств, в частности рассмотрены возможности построения электронных устройств на основе интегральных микросхем. Использованы материалы книги:

  • принципы построения генераторов,
  • расчёт генератора низкой частоты,
  • генератор с мостом Винна в цепи ОС

4. Хоровиц П., Хилл У.

«Искусство схемотехники» Книга содержит основные теоретические сведения о узлах и элементах современной радиоэлектронной аппаратуры (РЭА). Приводятся методы построения узлов РЭА и рекомендации по их применению. В книге также рассмотрены основные «классические» схемы электроники с пояснениями принципов их

работы. Все предложенные устройства собраны, в основном на биполярных и полевых транзисторах. Наряду с этим, в книге рассмотрен ряд «удачных» схем. Использованы материалы книги:

• мостовой генератор Винна

5. Найдеров В. З., Голованов А. И., Юсупов З. Ф., Гетман В. П., Гальперин Е. И.

«Функциональные устройства на микросхемах» Излагаются особенности построения и расчёта функциональных устройств аналоговых микросборок. Рассмотрены усилители и частотно-преобразовательные устройства, генераторы и формирователи гармонических и импульсных сигналов, аналоговые перемножители и компараторы напряжений,

способы улучшения их параметров. Большое внимание уделено вопросам применения и совершенствования таймеров и построения многофазных генераторов импульсов мостовой структуры. Из книги заимствован, в качестве справочного, материал об анализе свойств дифференциальных

каскадов.

6. Акулов И. И., Баржин В. Я., Валитов Р. А., Гармаш Е. Н., Кучин Л. Ф., Найдеров В. З., Пуценко В. В., Семеновский В. К., Симонов Ю. Л., Тарасов В. Л., Терехов И. К., Шевырталов Ю. Б., Юнденко И. Н.

«Теория и расчёт основных радиотехнических схем на транзисторах» Рассматриваются теория работы транзисторов и устройств (узлов РЭА) на их основе. Приведены типовые схемы узлов РЭА на транзисторах и методы их расчёта. Рассмотрены такие узлы РЭА, как усилители звуковых частот, постоянного тока, высокой частоты, промежуточной частоты,

видеоусилители, амплитудные детекторы системы автоматической регулировки усиления (АРУ), преобразователи частоты, автогенераторы и т. п. Использованы следующие материалы книги:

  • энергетический расчёт автогенераторов,
  • расчёт двухтактного каскада усилителя мощности звуковых частот.

7. Шкритек П.

«Справочное руководство по звуковой схемотехнике» Книга специалиста из ФРГ, в которой изложен обширный материал по схемотехнике и электронным компонентам для звуковой аппаратуры. Анализируются характеристики звуковых систем, методы снижения уровня искажений и шумов. Большое внимание уделяется традиционной аналоговой

схемотехнике. В то же время, значительная часть книги посвящена цифровым методам, применяемым в звуковой технике. Рассматриваются цифровые методы управления, цифровая передача звука. Использованы следующие материалы книги:

• эмиттерный и истоковый повторители на симметричной паре комплементарных транзисторов.

8. Боборыкин А. В., Липовецкий Г. Я., Литвинский Г. В., Оксинь О. Н., Прохорчик С. В., Проценко Л. В., Петренко Н. В., Сергеев А. А., Сивобород П. В.

«Однокристальные микроЭВМ» Приведено подробное техническое описание однокристальных микроЭВМ семейств МК48, МК51 и UPI-42. Рассмотрены зарубежные аналоги описанных микросхем. Рассматриваются технические характеристики, структурные схемы, система команд и их синтаксис. Все описания снабжены примерами. Использованы материалы по однокристальным микроЭВМ семейства МК51.

9. Лебедев О. Н.

«Микросхемы памяти и их применение» Рассмотрены устройство, режимы работы, функциональные возможности и электрические характеристики микросхем оперативных и постоянных запоминающих устройств. Приведены рекомендации по выбору микросхем памяти для практических разработок, по реализации режимов

управления микросхемами всех видов при записи, хранении и считывании информации. Даны развёрнутые примеры применения микросхем памяти в устройствах различного назначения. Использованы справочные данные на микросхемы серии К573.

10. Шило В. Л.

«Популярные цифровые микросхемы» Приведены сведения о трех самых распространенных в радиолюбительской практике видах цифровых микросхем: ТТЛ, КМОП и ЭСЛ. Кратко рассмотрены основы их схемотехники, показаны структуры, цоколёвки и дано описание работы более 300 типов массовых цифровых микросхем: логических

элементов, триггеров, регистров, счётчиков, мультиплексоров, арифметических и др. Даны рекомендации по их применению. Использованы справочные данные на микросхемы серии К1533.

Разработка структурной и функциональной схемы устройства

Прежде всего, в схеме должен присутствовать сам генератор, а, поскольку в техническом задании (ТЗ) был описан генератор, обеспечивающий выход на низкоомную нагрузку, то необходимо к выходу генератора подключить усилитель (тока), и только потом нагрузку. Это связано с низкой нагрузочной способностью прецизионных ОУ.

Кроме того, ТЗ требует осуществлять регулирование частоты генерации с помощью микроконтроллера. Было бы логично снабдить устройство управления, представленное микроконтроллером, удобными для экспериментатора средствами ввода требуемой частоты.

Рис.2. Структурная схема генератора.

Таким образом, в состав генератора войдут следующие узлы (см. рисунок 2):

  • формирователь синусоидального сигнала (генератор),
  • выходной усилитель мощности,
  • схема управления,
  • устройство контроля и индикации.

Теперь необходимо пояснить функциональную связь между отдельными узлами схемы, которые на функциональной схеме (см. рисунок 3) разбиты на более мелкие таким образом, чтобы каждый узел был функционально законченным.

Рис.3. Функциональная схема генератора.

В самом генераторе следует выделить два функциональных узла: усилитель и цепь обратной связи, в которую, в зависимости от значения, вводимого с клавиатуры, по сигналу управления с микроконтроллера коммутатор будет подстанавливать соответствующие комбинации задающих элементов.

Колебания на выходе генератора можно получить, охватив его активный элемент (усилитель) цепью ОС, что и показано на рисунке 3. В зависимости от номиналов элементов в цепи ОС, можно задавать частоту генерации. Для того чтобы получить на выходе генератора ряд определённых частот, необходимо подобрать соответствующие этим частотам значения элементов цепи ОС, сформировать из них массив и подключать с помощью цепей коммутации.

Цепи коммутации, в свою очередь, управляются сигналами с микроконтроллера, в прошивке которого поставлены в соответствие частоты, вводимые с клавиатуры и набор сигналов управления коммутаторами. Средства индикации предназначены, в данном случае, для визуального контроля испытателем текущего (заданного, но не реального) значения частоты.

В схеме присутствуют как элементы цифровые, так и аналоговые, поэтому они выделены в отдельные блоки, что и показано на рисунке 3.

Чтобы пояснить связь между структурной и функциональной схемами, следует сказать, что цепь ОС и активный элемент составляют вместе генератор; цепи коммутации и микроконтроллер образуют схему управления; а совокупность микроконтроллера и средств ввода-вывода (клавиатура и индикатор) — это устройство контроля и индикации.

В дальнейшем, расчёты будут вестись по узлам, показанным на рисунке 3, отдельно, а входные и выходные параметры узлов будут «состыковываться».

Рис.3б. Функциональная схема генератора.

Для повышения стабильности частоты и исключения температурного дрейфа часоты можно ввести в устройство цифровой частотомер и, в зависимости от его показаний, подстраивать частоту. Функциональная схема такого устройства показана на рисунке 3б.

Разработка принципиальной схемы и выбор элементной базы

Разработка аналоговой части

Генератор

Как уже говорилось, колебания на выходе генератора можно получить, охватив обычный усилитель положительной ОС. Незатухающие колебания в усилителе с ОС возникают при выполнении условий: R1

1

Ku α=1 (1.1) φk